Nanoreactores

Síntesis de Nanopartículas poliméricas
Alginate nanoparticle synthesis using n-heptane and isopropyl myristate/AOT reverse micelles: the impact of the non-polar solvent, water content, and pH on the particle size and cross-linking efficiency
F.M. Duque, R. D. Falcone, N.M. Correa. New J. Chem., 2024, 48, 16169-16176
DOI: 10.1039/D4NJ02981J

AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis
M.S. Orellano, C. Porporatto, J.J. Silver, R. D. Falcone, N.M. Correa.
Carbohydrate Polymers 171, 2017, 85–93
DOI: 10.1016/j.carbpol.2017.04.074

Síntesis de Nanopartículas metálicas

Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles.
G. A. Monti, G. A. Fernández, N. M. Correa, R. D. Falcone, F. Moyano, G. F. Silbestri. R. Soc. open sci., 2017, 4, 7, 170481
DOI: https://doi.org/10.1098/rsos.170481

Modified reverse micelle method as facile way to obtain several gold nanoparticle morphologies.
J. A. Gutierrez, J. J. Silbera, R. D. Falcone, N. M. Correa.
J. Mol. Liq., 2021, 331, 115709
DOI: https://doi.org/10.1016/j.molliq.2021.115709

Production of Pd nanoparticles in microemulsions. Effect of reaction rates on the particle size.
J.F. Sanchez, M.D. Sanchez, R.D. Falcone, H.A. Ritacco
Phys. Chem. Chem. Phys., 2022,24, 1692-1701
DOI:
10.1039/D1CP05049D
Catálisis enzimática en nanoreactores
Effect of Confinement on the Properties of Sequestered Mixed Polar Solvents: Enzymatic Catalysis in Nonaqueous 1,4-Bis-2-ethylhexylsulfosuccinate Reverse Micelles
A. M. Durantini, R. D. Falcone, J. J. Silber, N. M. Correa. Chem Phys. Chem., 2016, 17, 11, 1678-1685
DOI: https://doi.org/10.1002/cphc.201501190

Enzymatic Hydrolysis of N-Benzoyl-l-Tyrosine p-Nitroanilide by α-Chymotrypsin in DMSO-Water/AOT/n-Heptane Reverse Micelles. A Unique Interfacial Effect on the Enzymatic Activity
F. Moyano, E. Setien, J. J. Silber, N. M. Correa. Langmuir 2013, 29, 26, 8245–8254.
DOI: https://doi.org/10.1021/la401103q

Green AOT reverse micelles as nanoreactors for alkaline phosphatase. The hydrogen bond “dances” between water and the enzyme, the reaction product, and the reverse micelles interface.
G. Monti, F. Moyano, R. D. Falcone, N.M. Correa.
RSC Adv., 2023, 13, 1194.
DOI: 10.1039/D2RA06296H

Supramolecular Systems as an Alternative for Enzymatic Degradation of 1-Naphthyl Methylcarbamate (Carbaryl) Pesticide
E. Gomez Rodriguez, R. D. Falcone, P.R. Beassoni, F. Moyano, N.M. Correa.
ChemistrySelect 2019, 4, 7204 – 7210
DOI: 10.1002/slct.201901735

Cationic Reverse Micelles Create Water with Super Hydrogen-Bond-Donor Capacity for Enzymatic Catalysis: Hydrolysis of 2-Naphthyl Acetate by α-Chymotrypsin
F. Moyano, R. D. Falcone, J. C. Mejuto, J. J. Silber, N. M. Correa. Chem Phys. Chem., 2010, 16, 29, 8887-8893
DOI: https://doi.org/10.1002/chem.201000437

How the external solvent in biocompatible reverse micelles can improve the alkaline phosphatase behavior
N. Dib, V. R. Girardi, J. J. Silber, N. M. Correa, R. D. Falcone.
Org. Biomol. Chem., 2021,19, 4969-4977
DOI: https://doi.org/10.1039/D0OB02371J

Reacciones químicas en nanoreactores
Catanionic Reverse Micelles as an Optimal Microenvironment To Alter the Water Electron Donor Capacity in a SN2 Reaction
C. C. Villa. N. M. Correa, J.J. Silber, R. D.Falcone. J. Org. Chem. 2019, 84, 3, 1185–1191
DOI: https://doi.org/10.1021/acs.joc.8b02492

Ionic Liquids Entrapped in Reverse Micelles as Nanoreactors for Bimolecular Nucleophilic Substitution Reaction. Effect of the Confinement on the Chloride Ion Availability
D. Blach, M. Pessêgo, J. J. SilberN. M. Correa, L. García-Río, R. D. Falcone. Langmuir 2014, 30, 41, 12130–12137
DOI: https://doi.org/10.1021/la501496a
